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There are many constructions of the Suzuki groups in the literature (see for example
Suzuki’s original paper [3], as well as [1, 2, 4]), and one needs to make a strong case to justify
publishing another. Yet I believe the construction below is sufficiently new and sufficiently
elementary that in time it will come to be regarded as the standard construction.

First we set up the symplectic geometry. Let F = Fq be the field of order q = 22n+1, and for
i = 1, 2 define a 2-space Vi = 〈ei , e−i 〉 with symplectic form fi(ei , e−i ) = 1. Let V = V1 ⊥
V2 be the standard symplectic 4-space with symplectic form f = f1 ⊥ f2. Next we want to
define a commutative product u • v for all u, v ∈ V which satisfy f (u, v) = 0. To do this we
first define it for all u and v and then restrict to this subset. Define • on the standard basis by

e1 • e2 = e2

e−1 • e2 = e1

e1 • e−2 = e−1

e−1 • e−2 = e−2

ei • e±i = 0

and extend to the whole of V by the following twisted linearity formula:(∑
i

λi ei

)
•

⎛
⎝∑

j

μ j e j

⎞
⎠ =

∑
i, j

(λiμ j )
2n

(ei • e j ).

It is then easy to see that • satisfies the following:

(i) u • v = v • u,

(ii) u • (v + w) = u • v + u • w,

(iii) u • (λv) = λ2n
(u • v).

It also satisfies v • v = 0, since in the expansion of this product the cross terms cancel out,
and the diagonal terms are by definition zero.

Now define G = G(q), where q = 22n+1, to be the subgroup of all elements g of the sym-
plectic group preserving f , which also satisfy ug•vg = u•v for all u, v such that f (u, v) = 0.
Then in fact G(q) is isomorphic to the Suzuki group Sz(q), and the ovoid on which it acts
consists of the points 〈v〉 such that v = v • w for some w. (An ovoid is just a set of q2 + 1
points no two of which are collinear. See [4] for a discussion of this family of ovoids.)

To prove these facts is quite straightforward. First observe that the map r : ei �→ e−i

preserves f and • so lies in G. Next consider linear maps of the form ei �→ λi ei .
To preserve f , such a map must satisfy λ−i = λi

−1. To preserve • also, it must satisfy
(λ1e1) • (λ2e2) = λ2e2, that is (λ1λ2)

2n = λ2, so λ1λ2 = (λ2)
2n+1

and therefore λ1 = (λ2)
2n+1−1,
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which can also be written λ2 = (λ1)
2n+1+1. Conversely, if these equations hold then (λ−1e−1)•

(λ2e2) = (λ−1
1 λ2)

2n
(e−1 • e2) = λ1e1, so • is preserved. Indeed, if we define h(λ) to be such a

diagonal element, with λ1 = λ, λ2 = λ2n+1+1 and λ−i = (λi)
−1, then the h(λ) form a maximal

torus H � Cq−1, normalised by the Weyl group W � C2 generated by r . We have shown
that H is exactly the set of diagonal matrices contained in G.

Next we prove invariance under a root element x :

e−2 �→ e−2

e−1 �→ e−1 + e−2

e1 �→ e1 + e−1

e2 �→ e2 + e1 + e−1 + e−2.

Checking the symplectic form is easy, as

f (e−2, e−1 + e−2) = f (e−2, e1 + e−1) = 0
f (e−2, e2 + e1 + e−1 + e−2) = 1
f (e−1 + e−2, e1 + e−1) = 1
f (e−1 + e−2, e2 + e1 + e−1 + e−2) = 0
f (e1 + e−1, e2 + e1 + e−1 + e−2) = 0.

In order to check the product •, it is useful to think of • as corresponding to an additive
(but not linear) map π from a subspace of the exterior square V ∧ V to V . The symplectic
form f corresponds to a linear map φ: V ∧ V → V , and π is defined on the kernel of φ by
π(u ∧v) = u •v, and extending additively. In combination with the rule for scalar multiples,
this shows that in order to prove π is invariant under a group element g, it suffices to check
it on a basis for ker φ.

Therefore to check that the bullet product is invariant under x it is sufficient to check it on
the basis vectors for V , so we calculate

e−2 • (e−1 + e−2) = e−2

e−2 • (e1 + e−1) = e−1 + e−2

(e−1 + e−2) • (e2 + e1 + e−1 + e−2) = e−1 • (e2 + e−2) + e−2 • (e1 + e−1)

= e1 + e−1

(e1 + e−1) • (e2 + e1 + e−1 + e−2) = (e1 + e−1) • (e2 + e−2)

= e2 + e1 + e−1 + e−2

(e−1 + e−2) • (e1 + e−1) = e−1 + e−2

e−2 • (e2 + e1 + e−1 + e−2) = e−1 + e−2.

The last two lines of this calculation show that • defined on the whole space is not invariant
under x . However, their sum shows that π defined on ker φ is invariant, which is what is
required.

Thus we have proved that the standard generators r , h(λ) and x of the Suzuki groups are
contained in G.

To prove the converse, and to derive the standard properties of the Suzuki groups, consider
the points 〈v〉 defined by the property that v = v • w for some w. First observe that the
bullet product is graded in the sense that ei • e j = eg(i+ j), where g is the function mapping
−3, −1, 0, 1, 3 to −2, −1, 0, 1, 2 respectively, and e0 is interpreted as 0. This means that if
we define the degree d(v) of a vector v = ∑

i λi ei to be the largest i such that λi � 0, then
the degree of v • w is g(d(v) + d(w)). From the definition of • it is immediate that if 〈v〉
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is a point then the degree of v is either −2 or 2. In the former case 〈v〉 is the point 〈e−2〉, so
consider the latter case.

Conjugating the root element x by a suitable diagonal element gives a map of the form
e2 �→ e2 + αe1 + (lower terms) for arbitrary α, so we can assume that v has no term in e1.
Similarly, x squares to a map which takes e2 �→ e2 + e−1 + e−2, and conjugating this by a
suitable diagonal element gives a map which allows us to remove the term in e−1 from v.
Thus we have reduced to the case v = e2 + λe−2, and since w is perpendicular to v we may
assume w = e1 +μe−1. But then v•w = e2 +μ2n

e1 +λ2n
e−1 +(λμ)2n

e−2 so λ = 0. Therefore
there are precisely q2 points with degree 2, and so q2 + 1 points altogether.

Moreover, the proof shows that every point of degree 2 can be mapped to 〈e2〉 by an
element of the Borel subgroup B =〈x, H〉. Since B fixes the point 〈e−2〉, and r interchanges
e−2 with e2, we have shown that G acts 2-transitively on the q2 + 1 points. Now consider
the stabiliser of the two points 〈e−2〉 and 〈e2〉. If these two points are fixed then so are
the subspaces 〈e−2, e2〉⊥ = 〈e−1, e1〉 and e2 • 〈e−1, e1〉 = 〈e2, e1〉, and their intersection 〈e1〉.
Similarly, e−2 • 〈e−1, e1〉 = 〈e−2, e−1〉 is fixed and therefore so is 〈e−1〉. But as we observed
above, every diagonal element of G lies in H , which has order q −1, so the 2-point stabiliser
has order q − 1, and the stabiliser of the pair of points is a dihedral group of order 2(q − 1).

Therefore G has order (q2 + 1)q2(q − 1), and the point stabiliser has order q2(q − 1).
Since B has order at least q2(q − 1), it follows that B is the full stabiliser in G of the point
〈e−2〉. Moreover, G is generated by x , H and r , which concludes the proof that G = Sz(q).

In the case n = 0, that is q = 2, the group acts 2-transitively on the 5 points, and the point
stabiliser is C4. Thus Sz(2)�5:4.

Otherwise, the 2-point stabiliser is a cyclic group H of order q − 1 which fixes no other
points. By 2-transitivity, the 1-point stabiliser B is generated by conjugates of H , and there-
fore so is G. Since H is inverted by r , these generators are commutators, and so G is perfect.
Also, B consists of lower triangular matrices, so is soluble. The permutation action of G on
the q2+1 points is 2-transitive, so primitive, and faithful. In other words, G is a finite perfect
group acting faithfully and primitively on a set, such that the point stabiliser B has a soluble
normal subgroup (namely, B itself) whose conjugates generate G. Therefore, by one of the
standard variants of Iwasawa’s Lemma, G is simple.

To see how my construction relates to the Lie theory, consider the following picture of the
root system of type B2.

The short roots are labelled by e±1, e±2, and the long roots by f±1, f±2, in such a way that
reflection in the oblique line maps ei to a scalar multiple of fi . The non-zero terms in the
symplectic form correspond to pairs of short roots which sum to zero. The non-zero terms
of the bullet product correspond to pairs of short roots whose sum is a long root. More
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precisely, if ei + e j = fk in the root system, then ei • e j = ek in V . The grading of the basis
vectors corresponds to the ordering of the projections of the corresponding roots onto the
oblique line.

I note also that the finiteness of the field F is not necessary for the definitions in this
paper. We do however require that the field is a perfect field of characteristic 2, which means
that the Frobenius endomorphism λ �→ λ2 is an automorphism. (In fact, we can remove the
requirement for the field to be perfect, at the expense of replacing the product π : ker φ → V
by the corresponding coproduct π ′: V → V ∧ V/(ker φ)⊥.) We also require that F has
an automorphism σ which squares to the Frobenius automorphism, that is λσ 2 = λ2. The
inverse of the Frobenius automorphism may be written λ �→ λ1/2, and λσ may be written
λ

√
2. Any proofs which involve counting obviously do not go through, but we still obtain

a parametrisation of the points of degree 2 by pairs of field elements, and a 2-transitive
action on the points. Also, Iwasawa’s Lemma extends to infinite groups in the case when the
permutation action is 2-transitive, so the resulting groups are still simple.

Finally I remark that the approach taken in this paper can also be used to give elementary
constructions of the two families of Ree groups (see [5] and [6]). In the case of the Ree
groups of type G2, reasonably elementary existence proofs already exist in the literature, but
arguably this is not the case for the Ree groups of type F4.
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